UNCLAS%]IW “;‘J'ETD

AD 175 312

Reproduced
by the
ARMED SERVICES TECHNICAL INFORMATION AGENCY

ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, speci-
flcatlions or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby lncurs no responsibility, nor any
obligation whatscever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporatlion, or conveylng any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.

i

G\

= 215 312

o

3

. £ MEMORANDUM

RM-3084-PR
APRIL 1962

)

‘(’é T POLYNOMIAL APPROXIMATION-
i A NEW COMPUTATIONAL TECHNIQUE
B o IN DYNAMIC PRCGRAMMING-I.
S ALLOCATION PROCESSES

Richard Bellrnan, Robert halaba and Bella Kotkin

42-3-3

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

e The D-ﬂ n Deamm

SANTA MONICA » CALIFORNIA — e

MEMORANDUM
RM-3084-PR
APRIL 1962

POLYNOMIAL APPROXIMATION-

A NEW COMPUTATIONAL TECHNIQUE
IN DYNAMIC PROGRAMMING-I:
ALLOCATION PROCESSES

Richard Bellman, Robert Kalaba and Bella Kotkin

This research is sponsored by the United States Air Force under Project RAND — Con-
tract No. AF 49(638)-700 — monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Technology, Hq USAF. Views or conclusions con-
tained in this Memorandum should not be interpreted as representing the official opinion
or policy of the United States Air Force. Permission to quote from or reproduce portions
of this Memorandum must be obtained from The RAND Corporation.

ST -

00 waiN §T « SANTA mOMICA + CALIFOONIA

-111-

PREFACE

Part of the Project RAND research program consists of
basic supporting studies in mathematics. One aspect of this
i1s concerned with optimization processes. In this field, the
technique of dynamic programming has developed into a powerful
mathenatical tool.

In the present Memorandum the authors investigate the
applicébility of polynomial approximation as an adjunct to
the technique of dynamic programming.

SUMMARY

In this Memorandum the authors initiate the application
of the simple yet powerful computational technique of
polynomial approximation to problems in dynamic programming.

The theoretical applicabllity of orthogonal polynomials
is first discussed and then applied to one— and two—dimensilonal
allocation problems. Numerical results obtained from FORTRAN

programs Involving Legendre polynomials are presented.

-V i j.'_

CONTENTS

PREFACE .« ¢« & & v v v v e v v 4 e o o o o o o o o o « « » 1id
SUMMARY v v v v v s e 0 e e e e e e e e e e e e e e e e v
Section
1. INTRODUCTION. . + v v v v v v v v v e e e e e e e 1
2. POLYNOMIAL APPROXIMATION. + « « « v « « . . 3
3. APPLICATION TO DYNAMIC PROGRAMMING. 0
4. THE LEGENDRE POLYNOMIALS. . . . +« v v v v v v « . . T
5. EXAMPLES. v v v v o e e e e e e e e e e e e 3

a. Time tstimates.
b. Numerical Results

O\

0. TWO-DIMENSIONAL APPROXIMATION+ « « . . L0

o AR 5 6 6 0 o o 5 0 0 0 0 a0 b 9 5 o oo o < 1

)

a. Time Estimate
b. Numerical Results

IS

O. DISCUSSION. .+ « v« v v v v v v e v v e v e e e e 14

Appendix
A. FORTRAN PROGRAM — ONE-DIMENSIONAL ALLOCATION
PROBLEM. o v v v v v v e e e e e e e 15

vy
'

FORTRAN PROGRAM — TWO-DIMENSIONAL ALLOCATION
PIROII e o 0 © o« o o ©c 06 © © 0 o 0o o o o o a c 19

REAERENCESe 0 ¢ 0 o 0 0o o 0 0 o 6 0 6 0 0 0 0 0 0 © 0 o 25

N R R S e T W S NS RN B TR | S S IS TN NSO T A N s I N S A IR L A P v S i, 0 ol i s AU S0) W

POLYNOMIAL APPROXIMATION—A NEW COMPUTATIONAL TECHNIGUE
IN DYNAMIC PROGRAMMING—I: ALLOCATION PROCESSES

1. INTRODUCTION

The problem ol' maximizing the function
(1.1) F(xl,xg,...,xN) = gl(xl) + gT(xﬂ) + o+ gN(xN)
over the domain

(1.2) Xy b ek Xy =X, Xy 20

"1 N
can be reduced via familiar dynamic programming techniques

(see [1]) to that of deter:ining the sequence of functions

(f {a)} =zenerated by means of the recurrence relation

= Ogjgx lg, 1 (¥) + £ (x =y)].

The problem can thus ve solved numerically 1n a very simple
tashion, regardless of the complexlty of the functions gi(x).
A number of important allocatlon processes can be resolved in
this way. It we consider cases in which two distinct types of
resources must pe allocated, we face the problem of maximizing

the function

(1.4) F(x

over the domain

=
1
>
p—t
+
s
+
+
P4
i

N = X Xy 2 0,
5. + yg R yN = P yi 2 0.

Theoretically, there 1s no difficulty in applying the same
techniques.

The maximization problem can be reduced to the deter—
mination of the sequence (f (x,y)} generated by means of
the recurrence relation
(1.6) foa1(x6y) = Ozigx lg 1 (v,r) + £ (x —w,y = 7).

O<rey
In principle, this equation can be solved computatlonally
using the same technique that applies so well to (1.3). 1In
practice (see (1] for a discussion), questions of time and
accuracy arise. There are a number of ways of circumventing
these difficultles, among which the Lagrange multipller plays
a significant role.

In this seriles of papers, we wlsh to present a number of
applications of a new, simple and quite powerful method, that

of polynomial approximation. We shall begin with a discussion

of the allocation process posed in the foregolng paragraphs
and continue, 1in subsequent papers, with a treatment of
realistic trajectory and guldance processes. In a separate

serles of papers we shall apply this fundamental attack upon

dimensionality to the solution of a number of the equations
of mathematical physics.

We would like to express our appreciation to Oliver Gross
for the analytic solution of some test problems we used to
check the accuracy of our techniques, and for hls general

interest in the program.

2. POLYNOMIAL APPROXIMATION

In the systematic study of dynamic programming as a

computational algorithm given in [1l],a function f(x) 1is

considered to be a table of values at an appropriate set of

grid points:

(2.1) x | £(x)
o | 1,
N
28 | 1,
KA | Iy

In this way, the function f(x) 1s stored in the computer.
For functilons of one variable with K = 100 or 1000, this
Is a reasonably convenilent way to proceed. For functions of
two varilables, thils procedure becomes a bilt 1inconvenient esince
(K + 1) values for x combined with (K + 1) values for y
yields a total set of (K + 1)2 values. Consequently, when

we encounter functions of three or more variables, we must

balance accuracy agalnst time and the limited storage of
contemporary computers in our cholce of K.

The storage of functional values by means of a table of

values 1s ideally sulted to the treatment of problems involving

functions of quite arbitrary form. It 1s, on the other hand,

qulte wasteful and inefficient 1f we are dealing with functions

possessing a definite structure, which 1s to say, situations
In which there is a high correlation between the values of
f(ra) and f(sA). Since functions of this type occur in
many 1lmportant applications, and throughout mathematical
physics, it 1s worthwhile to develop methods which take
advantage of the "smoothness" of the function.

One such method 1s polynomlal approximation, or to be

precise, generallzed polynomial approximation. We represent

the function in the form

N M
(}' .) f(x) - % ak q)k(x)l

where the mk(x) are known elementary functlons such as xk,
sin kx, Pk(x) (the Legendre polynomial of degree k) or
Tk(x) (the Cebycev polynomial of degree k), and then store
the functilon for all values of interest by means of the sct
of M coefficients [al,ag,...,am].

It is important to point out that (2.2) is particularly
useful in automatically furnishing the interpolation—values

frequently needed 1n dynamic programming calculations. If

~

one uses a table of values of the form shown in (2.1),
interpolation is frequently a source of difficulty.
To determine the coefficients 2 it 1s convenilent to

make the @k(x) be an orthonormal set. Then

(2.3) A =fl f(x)o, (x)dx,

0
assuming for the purposes of convenience that 0 < x < 1. We
can, of course, use a Cebycev [it instead, and we willl explore
this 1n subsequent papers. A priorl, we would suspect that it
would be more efficient to use a mean—square fit (implied by
(2.3)), and take M to be larger, than to go to the trouble

ot determining the a, to minimize the functilon

M
(2.4) max |[f(x) - 2 akmk(x)f,
0<x<1 k=1
which for a fixed M may be expected to yleld a more accurate
approximation. Alternatively, one could use an approximation
by polygonal functions [1].
To evaluate the Gy without requiring a knowledge ol too
many values of f{(x), we use a quadrature technique
R -

oWy f(x o (%),
oy R

ne

(2.5) &y

where the welghts Wy and the quadrature pcints ;i are

chosen so that the equation

—0—
1 R N
(2.6) [alxlax= 3 welx,)
J
0 1=1

is exact for polynomials in x of degree (2R — 1) or less.
This requirement narrows us down to the Gauss guadrature
technique [2]. 1If we use generalized polynomials
(expressions such as (2.06)), we will obtain different weights
and quadrature points.

We may then store the functicn f{x) for 0< x <1

by storing the coefficients a or the particular values

k
£(x,) which enable us to compute the a, .
i K

J. APPLICATION TO DYNAMIC PROGRAMMING

Consider now the application of these ideas to the
computational solutlon of the functional equations of dynamic
programming. Suppose that we wish to compute the sequence
(f (x)} determined by
(5.1) fN(x) = max [gN(y) + fN_l(x -y,

OQy<x
N > 2, gliven that fl(x) = gl(x). To avold the tabulation of
each of the functions fN(x) at the x—grid [(0,4,...,KA],
where K may be a large number, we approximate to each
function fN(x) In the manner indicated above. Starting
with fl(x), we store the values fl(xi), 1 =1,2,...,R,

needed to evaluate f,(x — y) 1in the formula determining fg(x),

(5.0) f(x) = max [g(x;) + £y(x - y)).

<

.7..

We then determine successively fg(xl), i
a set of values which stores the function f{.{x). This
process 1s then repeated.

Although the calculation of fn_l(x —y) using (2.2)
is far more time—consuming than taking a value from storage,
we expect to gain time over—all because of the fact that we
are required to calculate only a few values, fn(xi),

1 =12,...,R, at each stage.

4. THE LEGENDRE POLYNOMIALS

Since in allocatlion processes we have a range [O,xo]
which stays constant as the process contlnues {rom stape to
stage, we can normalize &z 1 conslder the baslic 1nterval to
ve [0,1). Since the interval is finite and we want, at the
moment, a polynomial approximation, we shall employ Legendre
polynomials.

Let ji(x) denote the standard Legendre polynomial,

def'ined over [— 1,1], and let mk(x) be defined by the

relation

(4.1) e (x) = (2k + 1)V (2x - 1).

i

The sequence [@k(x)} is then orthonormal over (0,1}, 1i.e.,

il
(4.2) o (x)e x)ax = &,
0
From the standard recurrence relations for Pk(x)’ we obtain

the relation

S T L Y T P T A W S S R S L TR T P S TN i T R AU

1/2
(x) = £2%.+ ?) (21 + 1)1/2(2x - l)mi+l(x)

i 1

(21 - 1) mi(x)J.

This relation makes the evaluation of the sequence of values

of mi(x) for any x a relatively simple matter.

. EXAMPLES
In order to experiment with this new approximating

procedure, we devised a FORTRAN program for the IRM-=7090

whereby at each stage, atfter obtaining the new coefficlients
ak(i), we computed fi(x) from (2.2) for a succession of

as many values of x as deslred, and printed the result after
each computation. We used two modes of output, elther a 1list
ot numerical values, [x,fi(x)], or a graphlcal plot (done
directly by the 7090) of x versus fi(x).

We experimented with several types of functions g,(x)
for which the results could be derived Ifrom analytic
considerations.* Using the known analytic results as sa
checkpoint, we varied the parameters R, M, and the grid size
H, 1n order to determine the degree of accuracy we might
expect in general. We found remarkably good agreement to 2

—_— {

*
Oliver Gross was of conslderable assistance to us in
tnls respect.

— -

or more significant figures with a relatively low order of
approximation, namely R = 5, M = 6. This 1s encouraging
from the point of view of extending the method in the experi-
mental investigatlons of higher—dimensional allocation
processes where, as polnted out above, time and storage
aspects become significant. We also incorporated in our

program restraints of the form 0 < a, < Xy < bi < X, slnce

constraints of this nature often occur in applications.

a. Time Estimates

Followlng are some estimates of the execution time
required on the 7090:

1. 10 seconds for 4 stages, R =5, M= ©6 and a grid
of 0.05 both for the search and output listing.

2. 3 minutes for a total of 4 cases of 10 stages each;
R=3 M=U4; R=5 M=6; R=7, M=28; R=10, M= 11.
The grid in the search for the maximum 1s 0.0l and the output
listing is given for every x along the grid.

3. % minutes for the total of 4 cases mentioned above,
10 stages per case and a grid of 0.0l for the search. The
output 1s a graph where the 1ndependent variable x 1s

listed at intervals of 0.025.

b. Numerical Results

%)
1. g,(x) = i(x)l/r. Using the Schwarz lnequallity, we

readily obtaln the values

rg(x) = (B + 1)(eN + 1)x)Y/e.

-10-

For R=10, M= 11, H = 0.01 we found poor agreement at
the origin. This is to be expected because of the infinite
slope at x = 0. Agreement between exact and computed values
was good as soon as x moved away from the singular value O,

as can be seen from the following table:

Function Exact Computed
£,(0) 0.0 0.064
r1(2) 0.448 0.447
£,(1) 1.00 1.00
£10(0) 0.0 3.13
rlo(l) 19.6 19.6

Do gi(x) = 1(x + 04)1/2. We avoided the previous
difficulty at x = O (see the computed value of flo(o)
above), but found the function still rather sensitive near
the origin. As N (the number of stages) increased, the
agreement at x = 0 decreased.

3. gi(x) = 1(x + 1)1/2. The Schwarz inequality yields
the upper bound

£4(x) < (BN + 1)(2N + 1)(x + N)V2.

However, since the xy are subject to the restraint
0< Xy < x, we do not necessarily achleve the upper bound.
Some exact values based on an analysis by O. A. Gross are

listed as check points, R = 10, M= 11, H= 0.01.

=) Y=

__Exact value

Computed value

Function | Upper bound
fl(o) 1.00
r1(1) 1.41
f3(0) 6.48
r3(.5) T7.00
f7(-35) 32.1
rlo(l) —_—

1.00

1.4

6.67
29.1
59.5

1.00
1.41
6.00
6.67
29.1
59.3

. gy(x) = e—5/(1410x) g _ 10, M = 11, H = .OL.

Function | Exact Computed
£,(.2) 0.196 0.197
£,(.7) 0.659 0.659
£4(-2) 0.203 0.204
r3(.9) 0.860 0.862
£5(-2) 0.218 0.217
£10(2) 1.001 1.001

6. TWO—DIMENSIONAL APPROXIMATION

The problem of maximizing the function

N
(6.1) z g,(x,¥y)
1.1111

over the domain

N

(6.2) z
1=1
N
z Yy =Y
i1=1 1

xi = X,

0<ay <% ¢ by,

0<cy Lyy <9y

Xy < x,

yisy'

—]12—

can be readily handled by the methods described in Secs. 2
and 3.

The dynamic programming recurrence relation is:

fN(x,y) = m;x [gN(xN,yN) i fN_l(X - AV - YN)],

where R 1is determined by ay < xy < min(x,by),

ey < ¥y £ min(y,dN). Let x,, 1= l,...,Ri be the roots

of the normalized Legendre polynomial ¢R(x), and let [§J]

be a duplicate set of these quadrature points. Each function
fN(x,y) 1s expressed approximately by the relation

M M
(6.3) fylxy) = 3 3

sz a M am,

r,Ss

where the coefficlients, using the guadrature method, are

given by
R
(6.4) a () _ b g wow, F.(x,,y.) & (X,,y.)-
k,s 1=1 J=1 173 "N 7L k‘\h12Y

As 1n the one—dimenslonal case, we start with the known

y. In stage n

values fl(x,y) = gl(xl,yl), Xy = X, ¥y

we store the values 1,2,...,M, and

W

p(Xp¥y), for 4,
then compute and store the values an, S(n) In the storage

allotted to the previous stage. The latter coefficlents are

utilized in the computation of fn(x - X to

n+l?? T yn+1)

obtain the values of f In the next stage.

n+l(xi’yj)

—1%—

7. EXAMPLES

a. Time Estimate

The execution time required on the 7090 was 2 minutes for

4 stages, with R =959, M =¢€, a grid of H = 0.05 1in the two-

dimensional search, and an output listing of 3 test values of

f(x,y) 1n each stage.

b. Numerical Results

1. gi(x,y) = (21 - l)l/e(xy)l/uo Using the Holder
. /
inequality, we readily obtain the exact values fn(x,y) = n(xy)l/u,
x {x,y) = (Ln—l)x/nh, yn(x,y) = (2n—1)y/n°. Our results ror

R=5 M=06, and a grid of 0.05 in the search are:

Function | Exact Comp;%ed

ié(.j,.b) 1.40 [1.40

XB('b"b) 0:375 0-35 (to the nearest .0)
fu(l,l) 4.00 3.91

Here agaln the agreement was poor at the origin, presumably

)1/4 at x =0, y = 0.

because of the singular behavior of (xy
To confirm this hypothesis, we consldered the next case.
2. gi(x,y) = (x + 1y)/(1 + x + 1y). This case, as well

as the theoretical values, was suggested by 0. A. Gross, and

he determined the exact values.

-] 4

Function_} Exact Computed
£,(1,1) 1.17 1.17
fg(l,o) J 0.667 0.647

8. DISCUSSION

As can be seen, the agreement in general 1s quite satis—
factory. We can obtaln reasonably accurate values of the
maximum return and of the optimal allocation policy using
small amounts of machine time.

Combining these techniques with the method of the
Lagrange multipller, we can expect to solve three-and four—
dimensicnal resource allocation problems. Extending the
method to cover the approximation of functions of 3, 4, 5 and
6 varilables, we can treat Hltchcock—Koopmans allocation
processes of quite high dimension.

Finally, 1if we combine these techniques—polynomial
approximations and Lagrange multipliers—with that of
successlive approximatlions, there should be very few

allocatlon processes which still resist our efforts.

i
8
E
B

-15-

Appendix A
C 1 DIMENSICNAL ALLOCATION VIA DYNAMIC PROGRAMMING,APPROXIMATIONS
. LIST -
L] LABEL
C6495C1

1

60
661
61
550

50

110
111

10

12

CCMMON NoMoJRoHoIH Lo Yo XLoWoAgPyGoNI,AL,B1
X 9IHLoL1oL2yH19SoS1,HOLAST,HOLBL,HOLDOT
CIMENSICN XL(20),W(20),A(20),P(20)¢F120)¢X(20),AL(10),B1(10)
CALL INPUT ’
IFIN-100)2,3,3

STAGE 1

NI =1

DO 4 K=1l,V

SUM=0,

DC S J=1,JR

y=xL{J)

CALL RETG

CALL POLY

FlJ)=G

x{J) =Yy

SUM=SUMenlJ)eF(J)eP(K)

A(K)=SUpV

CONTINUE

OUTPUT 42,604NloJRoM

FURMAT (20H] ITERATIVE STAGE 1595H R=13,5H M=]3)
OQUTPUT 42,661

FORMAT(53H0 DECISION RETURN AT R ROOT VALUES
OUTPUT 42,61, (X{J)yFlJI)yJI=1,JR)

FOCRMAT (1M 2E20.8)

CUTPUT 42,550

FORMAT (30HO COEFFICIENTS A(K)
CUTPUT 42,50, (A(K)4K=1,M)

FORMAT(L1H E20.8)

CALL Out

STAGE NI GREATER THAN 1

D0 6 N2=2,N

NI=N2

DO 7 J=1,JR

Y¥=0.

CALL RETG

Y=xXL(J)-0.

CALL POLY

SU”O.

CC 8 K=]l,M

SUM=SUMeA(K)eP(K)

FlJ)=GeSUP

XtJ)=0.

CC 9 I=2,1IH

Xi=1

IF(IXI-1.)oK=-A1(N2))9,110,110

CONTINUE

IF((XI-1.)eH=B1(N2))111,111,11

CONTINUE

IF((XI=-1e)oH=XL(J))10,10,11
Y=(Xl-1l.)eH

CALL RETG

YaXL(J)=-(XI-1.)eH

CALL POLY

SUmM=0,

DO 12 K=],Mm

SUP=SUM+A(K)eP(K)

-16-
PH=GeSUVM
IF(PH=-F(J))9,9,15
15 FlJ)=PH
X{J)={XI-1.)®H
9 CONTINUE
11 CONTINUE
7 CONTINUE
CUTPUT 42,609N1yJRyM
CUTPUT 42,661
CUTPUT 42,61,(X(J)eFlJ)eJ=1,JR)
00 16 K=],M
SUrM=0,
DO 17 J=1,JR
v=XL{J)
CALL POLY
17 SUM=SUMeN{J)eF(J)eP(K)
A(K)=SUM
16 CONTINUE
CUTPUT 42,550
OUTPUT 42,50, (ALK} K=1,M)
CALL Our
6 CONTINUE
GO 70 1
3 CALL EXIT
sToP
ENC
. LISY
L LABEL
C649502
Cc INPUT ALL CCNSTANTS
SUBROUTINE INPUT
COMMON NoMoJRoHoIHo LYo XLoWoAsP,GoNIoALl,B1
X 9oIHLoL1oL2,H19S9S1,HOLAST,HOLBL ,HOLDOT
DIMENSICN XL(20),W(20),A120),P(20),F(20),X(20),A1(10),B81(10)
INPUT 41,204NoMoJRyIH,L
INPUT 419200 (XLEJ)oJ=1oJR) o (NWlI)oI=1oJRIoHo(AL(]I)yI=]1,N),
X (B14J)yJ=1,N)
OUTPUT 42,22oNeMyJRy IH,L
OUTPUT 42923, (XLIJ)sJd=13JR)o(WIT)oI=10JR)oCoHelALl]I),I=1,N),
X (B1LJ)yJ=1,N)
INPUT 41,1001,1IM14L1,L2
INPUT 41,1002,H1,5,S1
INPUT 41,1000,HULAST,HOLBL,HOLDOT
RETURN
1C00 FORMAT(3A1)
1CO1 FORMAT(I10)
1C02 FORMAT(F10.3)
20 FORMATI(5110)
21 FORMAT(E20.8)
22 FORMAT{1H1S5110)
23 FORMAT(1MH E20.8)

ENC
. LIST
L LABEL
C649503
C COMPUTE RETURN G AS FUNCTION OF Y

SUBROUTINE RETG

CO"FON ~Q-.JR.”'lNQl.YQ'L"".’lGO“l"l'al

X oIHloL1oL2yH19S9S1yHOLAST,HOLBL,HOLDOTY

DIMENSICN XLI20),w(20)¢A(20),P(20),F(20),X(20),A1(10),81(10)

|

C6495
C

40

°
.
C6495
C

75

13
174

13
L)
12

18

173

XNI=NI
G=XN]eSCRTF(Yel,)
RE TURN
ENC
LIST
LABEL
06
NORMALIZEC POLYNOMIALS P(K) AS FUNCTIONS OF Y
SUBROUTINE POLY
COMMON N.".JR'H.lHoL’Y.XLoH.A.P.G'NI.‘l.al
X sIHLoLloL2yH19S9S1oHOLAST,HOLBL ,HOLDOT
DIMENSICN XL(20) 4W(20),A(20),P(20),F(20),X(200,A2¢(10),81(10)
Pll)=1.
PL2)=SQRTF(3.)e(2.0Y-1.)
Ml=M=-2
DO 40 I=1,M1
Bl=1
D=SQRTF(2.2B1+3.)/(8B]¢1.)
E=SQRTF(2.081¢1.)
B=B1/SQRTF({2.°BI-1.)
Pll1¢2)=CelEe(l2.0Y=-1.)eP(]¢1l)-BeP(]))
RETURN
ENC
LIST
LABEL
05
COMPUTE AND CUTPUT TOTAL RETURN FUNCTION AT STAGE NI
SUBROUTINE CUuT -
COMMON N.H.JR.H.IH.L.V.xL.H.A.PoG.Nlolloﬂl
X oIHLloLloL2,H1,S¢S1oHOLAST,HOLBL,HOLOOT
DIMENSICN XL{20),W{20),A120),P(20),F(20),X(20),A02810),B81(10)
CIMENSION Z2(110)
CQUTPUT 42,75,NloJRyM
FORMAT (20H1 ITERATIVE STAGE 1595H R=13,5H n=13)
IF(L-1)13,18,18
CUTPUT 42,774
FORMAT (40HO RESOURCE RE TURN
DO 72 1S=1,1H
Xi1=19
Yz(XI=1l.)®H
CALL POLY
SUM=0.
DO 73 K=]l,M
SUM=SUMeAIK)eP(K)
FF=SUM
OUTPUT 42,74,Y,FF
FORMAT(1H F15.3,E20.8)
CONTINUE
GO 70 71
CONTINUEL
CO 772 19=1,1H1
xi=19
v=({XI=-1.)eHl
CALL POLY
SumM=0.
00 773 K=],¥
SUM=SUM+A(K)eP(K)
FF=SUM
NS=FFeSeS|
PO 1003 15=1,110

1CC3

71
18
16
1C04
1CC5
1172
71

1C06

Z{I5)=+0LBL

CO 1004 LS=1,L2
[F{I9-L1xL5-1)76,77,76
0N 18 16=1,110
2{16)=HOLDCT

CCNTINUE

CONTINUE

CONTINUE

CC 1005 I15=1,11C,1i0
Z{I5)=HCLCOT
Z{NS)=H(CLAST

CUTPUT 42,1CC6,Y,[2117),17=1,105)
CONTINUE

CONTINUE

RETURN

FORMAT({1IH FI1C.3,1C9A1)
ENC

v

19—

' erendix B
[2 DIMENSIONAL ALLOCATICN A DYNAMIC PROGRAMMINGAPPROX IMATIONS
* LIST
» LABEL
C649500
COMMON NeMoJR NI sX oY sGoFloWeVeXLoYLsAsPsPHeFoeBsColHoHeALl9B819CleD1
DIMENSION W(20)sVI(20) o XL (20)9YL(20)9A120+20)9P(20)ePH(20)9sF(120+20)
X 9B(3)9C(3)9SUM(20)eSUM2(20)ePX(20020)ePY(20+920)
X #81(20)9A1(20)9C1(20)9D1(20)
1 CALL INPUT
IF(N=100)2+3,3
C STAGE 1
2 NI=1
OUTPUT 42960sNIsJRM
60 FORMAT(20H1 +TERATIVE STAGE I5+5H R=1345H M=13)
QUTPUT 42,54

54 FORMAT (90HO X Y F
X XDEC YDEC)
DO & I=14JR
Xx=xXL(I)
CALL POLY

DO €00 K=z1eM
600 PX(KeI)=P(K)
DO 41 J=1eJR
Y=YL(J)
CALL PHOLY
DO 601 L=1eM
601 PY(LosJ)=PH(L)
CALL RETG
F(leJ)=GC
XDEC=XxXL(1)
YDEC=YL(J)
OUTPUT 42961 9XsYoF(19J)eXDEC,YDEC
61 FORMAT(1H 3E20¢692F10e3)
41 CONTINUE
4 CONTINUE
DO 5 K=1eM
DO 51 L=1eM
DO 52 I=1,JR
SUM(I1)=Ce
DO 402 J=1,JR
02 SUMII)I=SUM(I)+VIJIRF (1 ,J)#PY(LJ)
52 CONTINUE
SUM1=0,
DO 72 I=1,JR
70 SUMI=SUM1+W(]1)*PX(Kel)®SUM(I])
A(KoL)=SUMl
51 CONTINUE
5 CONTINUE
OUTPUT 42,50
50 FORMAT(30H1 COEFFICIENTS A(KoL))
QUTPUT 42653, ((A(1sJd)el=1eM)eJ=1eM)
53 FORMAT(1H 20e6)
QUTPUT 42,556
DO 55 I=1,3
x=8(1)

55

99
991

10

992
993

100

0~

vy=C(1)

CALL OuT

CONTINUE

STAGE NI GREATER THAN 1

DO 6 N2=29N

NI=NI+1

OUTPUT 424,604N1sJRsM

OUTPUT 42,54

DO 8 I=1,JR

DO 8C J=1,JR

X=0e ;

Y=0e.

CALL RETG

X=XL{I)=0e

Y=YL(J)=0e

CALL TOTRET

F(leJ)=F1

XDEC=0e.

YDEC=0e.

DO 9 I1=1s1H

xI=1I1
IFL(XI=1e)®#H=A1(1))9+99+99
CONTINUE
IF((XI=1)#H=81(1))991,991,11
CONTINUE
IFCIXI=1e)®H=XL(1))10y10,11
CONTINUE

DO 91 Jl=1,IH

XJ=J1
IF(IXJ=1e)®H=C1(J))919992,992
CONTINUE
IF((XJ=1e)#H=D1(J))993,+,993,9
CONTINUE
IF(IXJI=1e)®H=YL(J))100+10099
X=(XI-1e)®H

Y (XJ=1le)®#H

CALL RETG
X=XL(I)=(XI=1e)®H
Y=YL(J)=(XJ=1e)®H

CALL TOTRET

F2=F1

IF(F2=F(1+J))9:,91,15
FitleJd)=F2

XDEC=(XI=1e)®H
YDEC=(XJ=1s)®H

CONTINUE

CONTINUE

CONTINUE

OUTPUT 424619 XLIIDoYL(J)oF(14J)¢XDEC,YDEC

CONTINUE
CONTINUE
DO 400 K=1eM
DO 401 L=1¢M
DO 502 I=14JR

500
502

501

556

555

*
®
C6495
C

233
20
21
22
23

»
»
C6495
C

21—

SUM(1)=0.
DO 500 J=1sJR
SUMITI)=SUM(I)+V(JIRF(1oJ)#PY(LsJ)
CONTINUE
SUM1=0.
DO 501 I=1,JR
SUM1=SUM1+W(I)#SUM(I)#PX(KsI)
A(KoL)=SUM1
CONTINUE
CONTINUE
QUTPUT 42,50
QUTPUT 42535 ((A(1sJ)sl=1sM)eJ=1eM)
OUTPUT 424556
FORMAT(54H0 TEST X
DO 555 1=1,3
X=B(1I)
vy=C(1)
CALL OuT
CONTINUE
CONTINUE
GO 101
CALL EXIT
STOP
END
LIST
LABEL
01
INPUT ALL CONSTANTS
SUBROUTINE INPUT

COMMON NogMoJR NI s XY 9GoFloWeVeXLoYLsAsP sPHoFsBsColHoHeAl9B19C1,6D1
DIMENSION W(20)9V(20) o XL (20)sYL(20)9sA(20+20)9sP(20)sPH(20)9F(20020)
X oB(3)9C(3)9SUMI20) sSUM2(20)ePX(20920)sPY(20+20)

X 9B1(2C)9A1(20)9C1(20)9sD11(20)
INPUT 41,209NsMeJRsIN

INPUT 410210 (XL(J)9J=1slR)o(W(I)ol=10JR)Ie(YL(J)eJ=19JR)
X (VII)oI=10JR)sHe(B(I)sI=193)9(C(J)9sJ=193)

OUTPUT42922sNsM s JRe IH

OUTPUT429239(XLIJ) 9J=19JR) o (W(I)oI=1eJR)e(BlI)el=193)9H
INPUT 4192333 (A1(1)01=10JR)s(B1(I)sI=1eJR)s(CLl(I)el=19JR)

X (D1(I)s1=14JR)
FORMAT (F1043)
FORMAT (411C)
FORMAT (E20.8)
FORMAT (1H14110C)
FORMAT(1H E20.8)
RETURN
END

LIST
LABEL
02

COMPUTE RETURN G AS FUNCTION OF X AND Y

SUBROUTINE RETG

COMMON N."oJRcholoYoGoFl.WoVoXLoYL'AoPopHoFoBoColHoHoAIoBloCloDl
DIMENSION H(ZC:.V(ZO).XL(ZO).YL(ZO)'AIZOQZO)QPQZO)OpH(ZO)QF(ZOOZO)

22—

X 9B(3)9C(3)9SUM(20)9SUM2(20)9sPX(20+20)9sPY(20+20)
X 9B1(20)9A1(20)+C1(20)9D1(20)
XNI=NI
G=SQRTF(2e#XNI=-1¢)#SQRTF(SQRTF((X+el)®(Y+el)))
RETURN
END
* LIST
* LABEL
C649503
C NORMALIZED POLYNOMIALS P(K)AS FUNCTIONS OF X

SUBROUTINE POLY :
COMMON NogMoJRONI 9 XY 9GoFloWeVeXLoYLsAsP sPHoFoBosColHoHsAl9BlsClyD1
DIMENSION W(20)9VI(20)eXL(20)sYL(20)sA(20+20)9P(20)sPH(20)sF(20+20)
X 2B(3)9CI3)9SUM(20) sSUM2(20)sPX(20920)sPY(20+20)
X 9B1(20)sA1(2C)9C1(20)sD1(20)

Pll)=1e.

P(2)=SQRTF (3¢)®*(2e%X~-1,)

M1l=M=-2

DO 40 I1=1,M1

B8I=1I11

D=SQRTF(2+#*B1+3¢)/(B1+1,)

E=SQRTF (2.#81+1l,)

T=B1/SQRTF(2.%*t1~-1,)

40 P(I142)=D*(E#(2e%X=1o)%#P(1141)-T*P(]11))

RETURN
END \
* LIST
b LABEL
C649504
C NORMALIZED POLYNOMIALS PH(K) AS FUNCTIONS OF Y

SUBROUTINE PHOLY
COMMON NoMoJR NI sX9Y9GoF1loWoVeXLoYLsAsPoPHoFsBsColHsHyAl,Bl,oC1,D1
DIMENSION W(20)sVI(20)sXL(20)sYL(20)9A(2C+2C)sP(2C)sPH(20)+F(20+20)
X B(3)9C(3)9SUMI20) oSUM2(20)sPX(20+23)sPY(20+20)
X ¢81(20)9A1(20)49C1(230)4D1(20)
PH(l)=1.
PH(2)=SQRTF(3.)%(2e%Y-1,)
Ml=M=-2
DO 90 I1=1,M1
31=11
D=SGRTF(2.%Bl+3¢)/(Bl+1ls)
E=SQRTF (2.#BI+1l,)
T=Bl1/SQRTF(2.%BI-14)
90 PHII142)=D®(E#(2.%Y=1,)*PH(I1+1)=-T*PH(I1))

RETURN
END
- LIST
- LABEL
C649505
C COMPUTE TOTAL RETURN AS FUNCTION OF XY

SUBROUTINE TOTRET

COMMON NoMoJR NI o X oY 9GoFloWoVoXLoYLoAsP oPrHoFoBsColHoHsAlsB1,Cl,D1
DIMENSION W(203oVI(20)oXL(20)sYL(20)9A(20920)9P(20)sPHI20)sF(20+20)
X oB(3)eCI13)9SUM(20) 9SUM2(20)9ePX(20920)sPY(20+20)

83
81

84

»
»
C6495
C

283
281

284

261

-3

X 9B1(20)9A1(22)9C1(20)5D1(20)
CALL POLY .
CALL PHOLY
DO 81 IL=1leM
SUM2(IL)=0e
DO 83 IK=1eM
SUM2(IL)=SUM2(IL)+P(IK)I®A(IK,IL)
CONTINUE
SUM3=0.
DO 84 IL=1sM
SUM3=SUM3+PH(IL)*SUM2(IL)
F1=G+SUM3
RETURN
END
LIST
LABEL
06
TOTAL RETURN FROM POLYNOMIAL APPROXIMATIONsFUNCTION OF XY
SUBROUTINE CuT
COMMON NoMoJR.Nlox0YQG'F1oWoVoXLoYL'AopoPHQFOBOC'lHoHoAloBltCloDl
DIMENSION H(ZQ).V(ZO)oXL(ZO)oYL(ZO)tA(ZOoZO)oP(ZO)oPH(ZO)oFlZOOZO)
X 98(3)9C(3)'SUM(20)OSUMZ(ZO)QPX(ZO'ZO)GPY(ZOOZO,
X #B1(2C)+A1(20)+C1(20)5D1(20)
CALL POLY
CALL PHOLY a5
DO 281 IL=1eM
SUM2(IL)=0.
DO 283 IK=1eM
SUM2(IL)=SUM2 (IL)+P(IK)I®A(IKeIL)
CONTINUE
SUM3=0.
DO 284 IL=1yM
SUM3=SUM3+PH(IL)#SUM2(IL)
FF=SUM3
OUTPUT 424261 9shsYoFF
RETURN .
FORMAT (1H 3E20.6)
END
000255

000255

REFERENCES

1. BRellman, R., and S. Dreyfus, Applled Dynamic Programmiry,
The RAND Corporation, Report R-352, to appear; also to
be published by Frinceton University Press, Princetor.
New Jersey.

2. Bellman, R., R. Kalaba, and M. Prestrud, "On a New
Computational Solution of Time—dependent Transport
Processes—I: One—dimensional Case," Proc. Nat. Acad.
Sci. USA, Vol. 47, 1961, pp. 1072-1074.

